October 3–4, 2017 MCM Grandé, Odessa, Texas ShaleTechPermian.com

SHALETECHTM PERMIAN

Staked Pay Pad Development in the Midland Basin

Farhan Alimahomed Technology Integration Engineer Schlumberger Co-authors: R. Malpani, R. Jose, E. Haddad, E. Velez, L. Smith, S. Lati

<u>Outline</u>

- Permian Basin Introduction
- Workflow for Developing the Stacked Pay
- Well Stacking
- Well Spacing
- Conclusion
- Way Forward

Permian Basin of West Texas and New Mexico during late Permian

Permian Basin Trends (Data provided by IHS)

Stacked Pay

Stepwise Workflow

Pilot Well Logs

Completion Design

Completion Parameters	Lower & Upper Cline	Lower & Upper Wolfcamp	Lower & Upper Spraberry
Cluster Spacing, feet	30	30	30
Number of Clusters per Stage	5	5	5
Proppant/Lateral Foot (lbs/foot)	1,800	1,800	1,500
Fluid/Lateral Foot (bbls/foot)	45	45	36
Pump Rate (bbls/min)	80	80	70
Proppant Types	100 Mesh, 40/70	100 Mesh, 40/70	100 Mesh, 40/70, 30/50
Fluid Types	Slick Water	Slick Water	Slick Water, 10# & 15# Linear Gel
Maximum Proppant Concentration (PPA)	2	2	3

Well Stacking

Fully 3D Planar Model

- Captures fine changes in vertical stress profile
- Pinch points determination
- Fracture overlap

SHALE

PERMIAN

Well Stacking

Stepwise Workflow

1-Year BOE vs Lateral Length (Data provided by IHS)

Complex Fracture Modeling

Complex Fracture Modeling

Depletion Profile

5 years of production history matching performed on P50 type curve for each zone

Model Constraints

Well Spacing Results

Red Line – 15 Yr MBO/Section Blue Line – % Production Reduction/Well

Gun Barrel View (38 Wells)

Lower Cline

Lower Cline

Lower Cline

Conclusion

- A reservoir centric approach was used to determine optimum stacking and spacing of wells in the Midland Basin.
- Pilot well log suite included advanced logs such as the NMR, Dipole Sonic, Elemental Spectroscopy and Images.
- Well stacking modeling indicated FIVE zones that were highly productive.
- Fracture overlap was observed between the Upper Cline and the Lower Wolfcamp (target 2).
- Optimum well spacing exercise indicated a total of **38** wells in a section for **4** zones:
 - Lower Spraberry 6 wells (880 ft)
 - ➢ Lower Wolfcamp − 12 wells (440 ft)
 - Upper Cline 12 wells (440 ft)
 - Lower Cline 8 wells (660 ft)

Way Forward

- Effect of Completion Design on Well Spacing
 Proppant/ft
 - Proppant/fluid ratio
 - Cluster spacing
 - Number of clusters/stage
- Parent-Child Interaction
 - Depletion & Stress perturbation
 - Timing of in-fill drilling
- Completion Sequencing
 - Which zone to complete first?
 - Creating artificial stress barrier? Does it work?

SPE-184835-MS

Thank You Questions

Falimahomed@slb.com

