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Problem: Low perf. efficiency

e Perforation breakdown efficiency can be low:
— Centralization

— Rock composition Variations in perforation breakdown
— Pore pressure pressures can exceed 1000’s of psi*
— Stress

* Few tools are available to tackle the issue
— Ball sealing: no control, time, challenge in horizontals
— Diverters: no control, time
— Specialized perf. guns: perf. pattern & gun placement
does not guarantee perf. opening.

*Waters, G. (2017). Fracture Initial Pressures and Near-Well Hydraulic Fracture
Geometries in Cemented, Perforated, Horizontal Wells, Hydraulic Fracturing

Journal, 4 (3). SH ALET E C -




Perforations are key!
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Figure 12—Post-Fracturing perforation image clearly showing significant erosion

Perforation phase (180° = low side of wellbore)
Roberts, G., Lilly, T. B., Tymons, T. R. (2018). Improved Well Figure 15—Spatial plot of perforation depth against phase. Bubble size represents measured area.

Stimulation Through the Application of Downhole Video Analytics. SPE

HFTC. The Woodlands, TX. https://doi.org/10.2118/189851-MS S I I A L EI' : C ™
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Variable Rate Fracturing (VRF)

* Engineered rate changes
— Induced pressure pulse

BH ey e

oressure within wellbore.

— Pressure pulse along with
original limited entry

fracturing pressure can be

significant & can open
additional perforations.

Pump rate‘ ’

— Transient generated either
with a drop or a rise in rate.
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US Patents 9,581,004, 9,879,514,
9,982,523, 10,018,025 + others pending




Example VRF field implementation
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Initial field test results - Marcellus
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VRF performed on
odd frac. stages.

Design kept same

(same proppant/
fluid loads). =
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Permian test

 Approach — VRF

— VRF on all stages. Control

— Measured perf. opening
before & after pumping
(rate step tests).

— On average, 20%
additional open perfs .
were observed. Days on production

I 15%

Cum. BOE

 Both accelerated recovery & higher EOR were
observed.

Ciezobka et al. (2018). Hydraulic Fracturing Test Site (HFTS) - Project Overview and

Summary of Results. URTeC. https://doi.org/10.15530/URTEC-2018-2937168 S H A L E I -
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VRF design - FD modeling

 We model pressure response @ perforations based on
transient conditions, i.e., initial rate drop [AQ,] &

corresponding time [AT,] for drop as well as the time to
get back to rate [AT, + AT,].

Cutoff for Min. required AP @ perfs
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Modeling - theoretical basis

e Use equation of continuity &
equation of momentum to
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* Account for wellbore trajectory
L g VIVl =0 & friction
dt T padt ' Pdx ' 2D '

WV 1dP  de e Use predicted AP behavior with
te g topVIVI=0 historic VRF data to identify
optimal VRF parameters &
o %ﬁw expected AP associated with
| 2. actual treatment.
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Modeled vs. actual AP behavior
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* Pressure transient modeling is validated
| using various measurements.

0 10 20 30 40
Time (s)

These include actual response in wellbore to transients,

actual & synthetic travel times, etc. B
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Calculating perforation efficiency

* C(Classical stepdown test as
well as VRF drops as data
points for open perf.
estimation.

— Initial open
perforations (baseline)

— # open perfs. during
VRF drops

— |ldentify progression

— Design subsequent
rate pulse
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Estimate efficiency upside
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Benchmarking existing perforation

efficiency used to predict VRF

performance in analogous

wells.

Results validated independently.
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Normalized measure

VRF design parameters are key
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VRF parameters such as AP shown here is critical for
maximized efficiency gains.

There is a close correlation between AP & actual additional
opening of perforations achieved

during VRF treatments. SHALET EC




Open perf. improvement from VRF

Better completion

More perforations - More fractures = uniform slurry distribution.
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More perforation
should lead to
reduced near-
wellbore skin
(tortuosity).

It should reduce
chances for screen-
outs.
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Need for accurate design!

* VRF is easier for toe stages as the wellbore lengths are

longer.

* Shorter wellbores result in smaller AP. Proper design

allows for maximized gains.
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Blind rate drops are suboptimal

Operational issues can
place constraints on
some VRF parameters. In
such situations, design
parameters are
recomputed for effective
rate drops.
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Conclusions

VRF helps enhance perforation efficiency by opening
additional perforations before proppant is pumped.
Significant improvement in well productivity!

VRF has been implemented under license in over 40
wells. Additional wells are pending.

The approach is valid for any play, as long as the
completions are plug & perf type.

VRF creates lower tortuosity around perforations &
reduced chances of screen-outs.

No additional material or equipment is needed for

implementation in field settings.
SHALETE




Question ?

Debotyam.Maity@gastechnology.org: (847) 418-6273
Jordan.Ciezobka@gastechnology.org: (847) 768-0924

http://www.gastechnoloqgy.org/news/Pages/PerfExtra-Technology-for-Hydraulic-Fracturing.aspx
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