DEEPWATER DEVELOPMENT

28 - 30 March 2023 | Millennium Gloucester Hotel |

London, UK

ORGANIZED BY

World Oil®

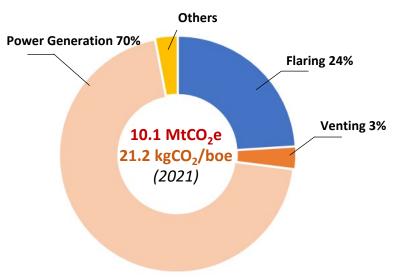
Subsea Organic Rankine Cycle (ORC) for subsea satellite power supply

Jérôme Anfray R&D project manager

TotalEnergies

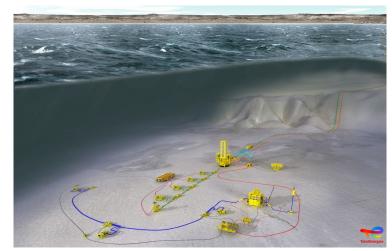
Nicolas Congar Technical manager

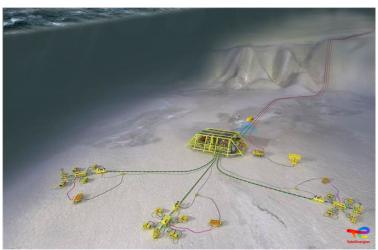
Agenda


- Subsea tie-back: Power Generation & GHG reduction stake
- R&D to screen innovative local power solutions
- Subsea ORC design & performances
- Benchmark
- Concluding Remarks

Subsea tie-back: Power Generation & GHG reduction stake

The GHG Stakes (scope 1 and 2)




UK Upstream Offshore Oil&Gas emissions1

~50 % of new fields development are subsea tieback in North Sea²

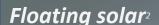
New development to target a Zero Carbon Emission approach

Long subsea tie-back Oil & Gas vision

All electric power demand from 100 KWe (Well control/command) to Tens of MWe (Subsea Processing)

Conventional approach: power supply through umbilical or subsea power cables from offshore facilities or from shore


Alternative: Supply a "Local" & Green Power?



R&D to screen innovative local power solutions Subsea ORC: a new equipment of the subsea factory?

Subsea ORC

Ocean energies¹

Advantages:

- Local hot source (Production fluid) & Cold source (Sea water)
- Reduce power losses / Exploit thermal losses
- Mitigate issues of weight & congestion, additional power on topsides

Upsides:

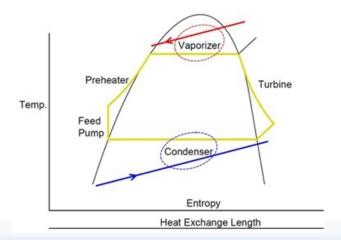
- Subsea architecture simplification (Umbilical, Pipeline)
- Export the "green" excess power

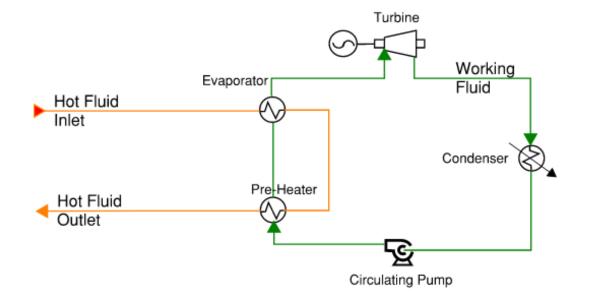
Points of attention:

- Limited to sufficiently "High" Temperature Field (>100°C)
- To be combined with a dedicated hydrate & Wax strategy (fluid compatibility, cold flow transport...)

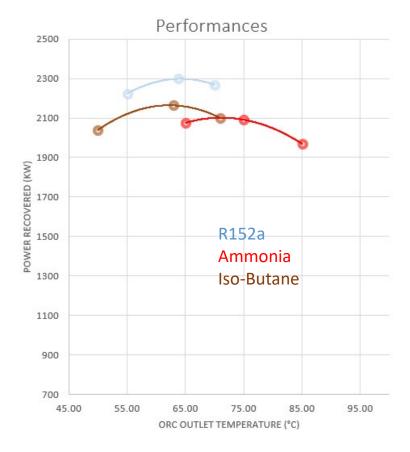
Subsea ORC to produce power from the "excess" well head temperature

Sensitivity	100 kWe	500 KWe	> 1MWe	
Power application	Local	Local	Local <i>or</i> Power Export	
Power demand	WH command	WH command + SCSI*	WH command + subsea processing	


1 Illustration, TotalEnergies 2 Illustration, Moss Maritime (Saipem) *SCSI: Subsea Chemical Storage & Injection


Subsea ORC principle

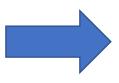
- Objective of the study:
 - Develop a subsea ORC (organic Rankine cycle) module connected to a production manifold
 - Convert the well heat potential to electrical power
- Typical onshore application :
 - Range from 100 kWe to 10 MWe
 - Efficiency between 10%-20%



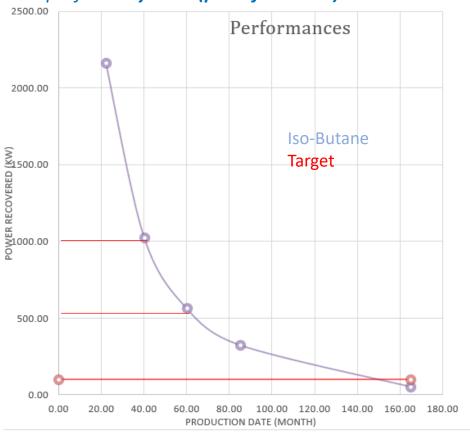
ORC submarinization

- How to submarinize this onshore system ?
 - Designed for a high range of water depth
 - Designed considering maintenance plan
- Process simulation:
 - Min t° to avoid hydrate formation at well fluid outlet
 - Sea water temperature to fix the condenser condition
 - Evaporation performed up to intermediate fluid vapor saturation
- Selection of working fluid:
 - Environmental consideration (GWP > 150)
 - Phase envelope compatible with hot source temperature
 - Fluid screening study to maximize performances

Selected working fluid : i-butane



Subsea ORC Performances

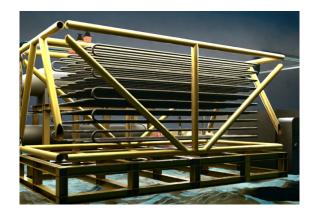


Two modules of 1 **MW** each in parallel, **2x50**% sized for production profiles at **year 2 (peak flow rate)**

Rapid decline of the power production with the production profile

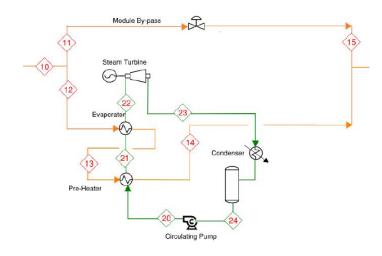
Allow a continuous power supply of the WH Control & Command + export of the power excess

Subsea ORC design


Design scenario:

- Sizing of equipment limited to the need: produce a constant power (100 KWe, 500 KWe) as long as possible
- Drivers: optimize size & weight

Pre-heater/evaporator



Passive condenser

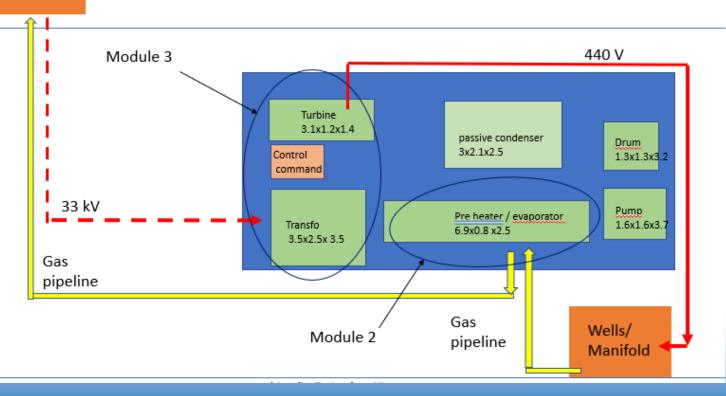
Turbine/alternator/ cable

scenario	100 kWe	500 KWe
Power application	Well head control command	Well head control command + light subsea processing
Module weight (tons)	135	235

Subsea architecture & modularization

• 100 kW : 1 single module 135 T (10x10x4)

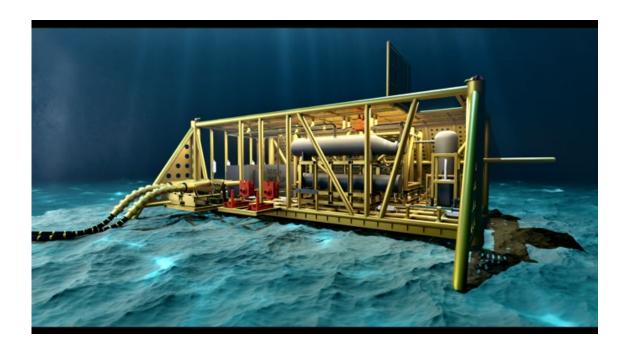
• 500 kW : 3 sub-modules —


1 MW : 4 sub-modules

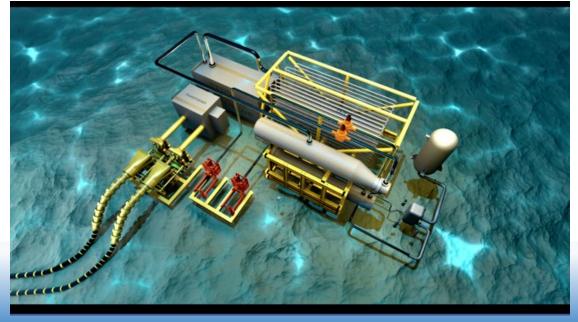
platform

Main module	Module 2 (exchanger module)	Module 3 (electrical module)
Pre installation	Post installation	Post installation
15x10x4 m	6.9x0.8x2.5 m	7.5x2.5x3.5 m
162 T	52 T	25 T

Installation with MSV for module until 500 kW



Subsea architecture & modularization



3D model

General arrangement & basic design of the structure

Benchmark

Comparison for a typical subsea tie-back application, North Sea:

	Subsea ORC		Offshore floating wind		Ocean wave energy		
Power range capacity (MWe)	2 MWe max (0.6 MWe averag	e)	8 MWe / turbine		From few to several MWe systems		
Applicability	(North Sea) High reservoir (> 120°C	•	Depends on wind resources capacity on area	•		Depends on wave resources capacity on area	
Intermittency	Continuous	\odot	Intermittent / seasonal effect		Intermittent / Seasonal effect		
Technology Maturity	Low		medium	<u></u>	medium	<u></u>	
Estimated LCOE (\$/MWh)	> 1 000*		100 to 300 ¹	<u>=</u>	200 to 600 ²	$\overline{\Box}$	
GHG saving technical cost (\$/tCO₂eq)	> 1 000						

^{*} Expected to improve with maturity evolution

A non-intermittent solution, but subsea ORC penalized by its low maturity & dependance to the field production profile. Additional R&D work required.

Concluding Remarks

- R&D to identify new solutions to decarbonize the Oil&Gas offshore industry
- Subsea ORC, a new subsea processing item for a local & green electricity at satellite location
- Use of environment energy (production fluid/sea water) to reduce GHG emissions. May enable to simplify the subsea architectures (umbilical size)
- A solution to power continuously well head control/command and light subsea processing
- Low maturity, necessity to onboard vendors to mature the solution & need of breakthrough R&D on ORC to broaden the application case (lower temperature & improve efficiency)

We need to work together (Contractors & Operators) to achieve the Net Zero Emission

DEEPWATER DEVELOPMENT

28 - 30 March 2023 | Millennium Gloucester Hotel |

London, UK

ORGANIZED BY

World Oil®