DEEPWATER DEVELOPMENT

28 - 30 March 2023 | Millennium Gloucester Hotel |

London, UK

ORGANIZED BY

Risk Management Considerations for Offshore Carbon Capture, Utilization and Storage (CCUS)

Luiz Feijo

Carbon Sectors

Sources and Destinations

- **From:** Marine and offshore vessels onboard scrubbing systems
 - Direct air capture

- Adjacent/nearby usage or sequestration
- Pipeline, ship or land transport to a usage or sequestration site
- Pipeline, ship or land transport to a hub for onward transport

Offshore Hub Characteristics

- Fixed or floating platform
 - Single source or multisource CO2
- Import via pipeline and/or from ships
- Storage
 - Onboard tanks or separate floating storage unit
- Onboard processing
 - Metering, sampling, treating, preparing for injection

Location

- Number of CO2 sources
- Distance from sources
- Distance to use or sequestration destination
- Suitability of site metocean and soils

Infrastructure

- Pipeline network
 - existing or new
- Ports and shipping routes
- Access to wells or aquifers

Pipelines	 Pressure design, materials, maintaining single-phase flow Are existing pipelines suitable for purposing to CO2?
Tankers and platform supply	 Approach procedures, safety zones etc. Normal operations and emergency response situations
Well Intervention	 As needed by drilling vessel

CO2 Property and Volumes

- Required specification for CO2
 - how to handle offspec fluid?
- Metering for fees, carbon tax/credits, etc.

Materials and equipment for CO2 handling

- Specified limits for pressure and temperature
- Sufficient power and utility system capacity
- Consider non-metallic components also (seals, seats, etc.)

Onboard Constraints

- Size and location of equipment
- Impact on machinery arrangements, other shipboard systems, escape routes

Normal Operations	 Design and construction standards Procedures and training 	
Potential leakage or release of CO2	 Detection and alarms philosophy Design features such as minimizing non-welded connections Emergency procedures and training 	
Use, storage and handling of chemicals	 Procedures and training Disposal/recycling 	

Risk Factors

- Colorless, odorless
- Non-flammable
- Dispersion characteristics unlike lighter gases
- Corrosion from water and contaminants

Hierarchy of Controls

- Materials selection
- Minimize leak sources
- Detection and alarms
- Training
- Monitoring of CO2
 properties

- Many similarities to existing technologies in marine and offshore
- Difference is the substance and its specific properties
- Lack of experience specific to CO2 at this time
 - Technical and operational
- Apply systematic risk assessment principles and tools
 - Hazard identification e.g. HAZID
 - Process safety, e.g. HAZOP, bow tie
 - Develop barriers to prevent incidents and minimize consequences within project risk thresholds

Thank you

Presenter: Luiz Feijo

lfeijo@eagle.org

Author: Joseph Rousseau

jrousseau@eagle.org

DEEPWATER DEVELOPMENT

28 - 30 March 2023 | Millennium Gloucester Hotel |

London, UK

ORGANIZED BY

