DEEPWATER DEVELOPMENT

28 - 30 March 2023 | Millennium Gloucester Hotel |

London, UK

ORGANIZED BY

Uncrewed Surface Vehicles (USV) Network Initiative in support to EOOS

C.Waldmann

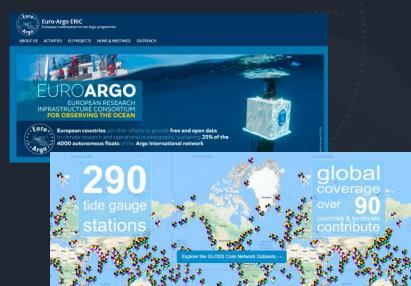
J. Burris

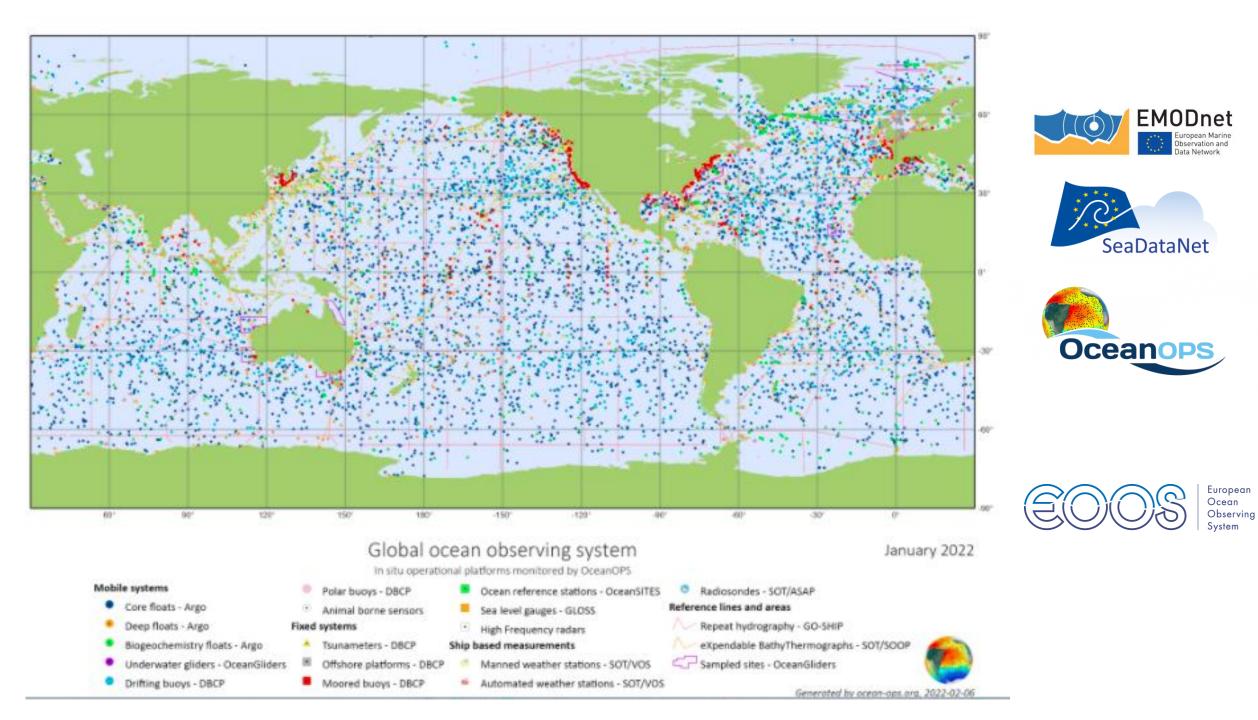
SCRIPPS INSTITUTION OF OCEANOGRAPHY UC San Diego

L. Grare

C. Barrera

- Floats
- Moorings
- UW-gliders
- Research Vessel
- Sea-Level Gauges
- HF Radar
- FerryBox
- Animal-borne Instrument





emso

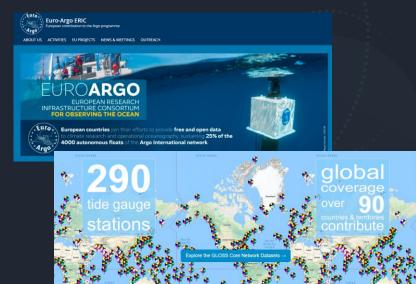
- Floats
- Moorings
- UW-gliders
- Research Vessel
- Sea-Level Gauges
- HF Radar
- FerryBox
- Animal-borne Instrument

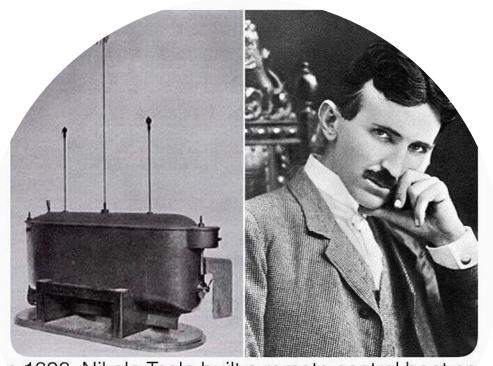
emso

• Floats

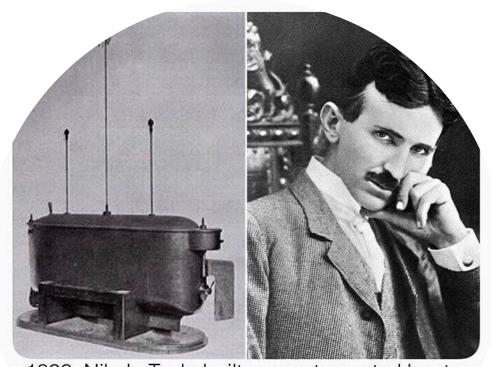
• Moorings

- UW-gliders
- Research Vessels
- Sea-Level Gauges
- HF Radar
- FerryBox
- Animal-borne Instruments
- Uncrewed Surface Vehicles -US




emso

What exactly is an Uncrewed Surface Vehicle?


USV-tech SoA in brief...

n 1898, Nikola Tesla built a remote control boat an 'splayed it in Madison Square Garden. The crov ought that he was controlling it with his mind a trained monkey was inside. When Tesla otion of the crowd, he decided to trive 'solution that they could control to the control t

1898

USV-tech SoA in brief...

n 1898, Nikola Tesla built a remote control boat an 'splayed it in Madison Square Garden. The crov ought that he was controlling it with his mind a trained monkey was inside. When Tesla otion of the crowd, he decided to trive 'solution that they could control to the control t

Country	Year	USV Name	Research Purpose & Major Achievements	
	1993	ARTEMIS (Vaneck et al., 1996)	1) Systems test; 2) Bathymetry sampling	
	1996	ACES (Manley, 1997)	1) Oceanographic data collection	
	1998	SCOUT (Goudey et al., 1998)	1) Cooperative control; 2) Testbed	
	1990 <i>s</i>	Roboski (Bremer et al., 2007)	1) Surveillance; 2) Target drones	
	1990 <i>s</i>	Owls USVs (Motwani, 2012)	1) Harbor and ship security	
	2000	AutoCat (Manley et al., 2000)	1) Survey of shipwreck	
	2001	Spartan Scout (Motwani, 2012)	1) Port surveillance; 2) Force protection	
	2003	USSV-HTF (Motwani, 2012)	1) Towing various sensors and effectors	
USA	2005	WASP (Mahacek, 2005)	1) Stability test; 2) Bathymetric mapping	
	2005	Seadoo Challenger 2000 (Ebken et al., 2005)	1) Collision avoidance; 2) Autonomous recovery	
	2005	HUSCy (Curcio et al., 2005)	1) Hydrographic survey	
	2008	Wave Glider (Bingham et al., 2012)	1) Data collection	
	2008	Nereus (Beck et al., 2009)	1) Stability test; 2) Bathymetric mapping	
	2009	SeaWASP (Furfaro et al., 2009)	1) Environmental monitoring; 2) Testbed	
	2010	Piranha (Yang et al., 2011)	1) Reconnaissance	
	2011	MUSCL (Bertram, 2008)	1) Surveillance and reconnaissance	
	1990 <i>s</i>	MIMIR (Roberts & Sutton, 2006)	1) Shallow water search and survey	
	2000 <i>s</i>	C-series USVs (Anonymous, 2014a)	1) Assets security; 2) Environmental monitoring; 3) Mining	
	2000 <i>s</i>	FENRIR (Roberts & Sutton, 2006)	1) Relay between UUV and control center	
UK	2000 <i>s</i>	Sentry (Murray, 2008)	1) Harbor and shore survey and protection	
UK	2003	SWIMS (Roberts & Sutton, 2006)	1) Mine sweeping	
	2003	SeaFox (Yakimenko & Kragelund, 2011)	 Maritime security operations 	
	2004	Springer (Naeem et al., 2008b)	 Environment monitoring; 2) Test platform 	
	2008	Blackfish (Sonnenburg, 2012)	1) Harbor protection and patrol	
	1983	DOLPHIN (Curcio et al., 2005)	1) Bathymetric mapping	
Canada	2000 <i>s</i>	Barracuda (Bertram, 2008)	1) As sea-surface target system	
	2000 <i>s</i>	Hammerhead (Bertram, 2008)	 Simulating a multi-vehicle swarm threat 	
	2004	SESAMO (Caccia et al., 2005)	1) Environmental sampling	
Italy	2005	Charlie (Caccia et al., 2007)	1) Environmental sampling and survey	
lilly	2007	ALANIS (Bibuli et al., 2012)	1) Environmental sampling and survey	
	2008	U-Ranger (Motwani, 2012)	1) Mine sweeping; 2) Harbor protection	
	2000	CARAVELA (Pascoal et al., 2006)	1) Oceanographic sampling; 2) Testbed	
	2004	DELFIM (Alves et al., 2006) and DELFIMX	1) Oceanographic sampling; 2) Communication with UUVs	
Portugal	2007	(Gomes et al., 2006)		
	2006	ROAZ I & II (Martins et al., 2007a)	1) Search and rescue	
	2006	Swordfish (Ferreira et al., 2007)	1) Environmental survey	
NT	2008	Kaasbøll (Breivik et al., 2008)	1) Navigation and control systems test	
Norway	2008	Viknes (Breivik, 2010)	1) Multi-purpose system tests	
	2000 <i>s</i>	Mariner (Breivik, 2010)	1) Environmental surveillance and sampling	
	2003 2005	Protector (Breivik et al., 2008)	1) Reconnaissance; 2) Counter-mine	
Israel	2005	Seastar (Yang et al., 2011) Stingrou (Bertram, 2008)	1) Port, coastal survey; 2) Reconnaissance	
	2003	Stingray (Bertram, 2008) Silver Marlin (Bertram, 2008)	 Homeland security and coastguard Surveillance and reconnaissance 	
Germany	1998	MESSIN (Majohr & Buch, 2006)	1) Water ecological study	
Germany	2005	Basil (Bertram, 2008)	1) Offshore pipelines survey	
France	2005	MiniVAMP (Bertram, 2008)	1) Remote survey of offshore pipelines	
	2005	Inspector (Yang et al., 2011)	1) Surveillance and reconnaissance	
Sweden	2002	Piraya (Yang et al., 2011)	1) Cooperative control	
Singapore	2010	Venus (Bertram, 2008)	1) Multi-tasks test	
0.1	2008	Tianxiang One (Yan et al., 2010)	1) Meteorological survey	
China	2010	USV-ZhengHe (Yang et al., 2011)	1) Inshore marine data collection	
	2000	Kan-Chan (Desa et al., 2007)	1) Study of global warming	
Japan	2004	UMV series (Bertram, 2008)	1) Ocean and atmosphere exploration	Liu et al. 2016
India	2006	ROSS (Desa et al., 2007)	1) Oceanographic sampling	Liu et ul. 2010

- Propulsion mainly based on electrical thrusters.
- Short-médium range endurance (hours/days) for missions near shore areas.

• Is USV technology paving the way somehow for Autonomous Maritime Navigation strategy?

• Should USV and Autonomous Ships development strategies work under a closer and synergetic manner in some fields in order to strength and promote MASS?

INTERNATIONAL MARITIME ORGANIZATION

25 May 2021

Autonomous

completed

ships: regulatory

scoping exercise

ABOUT IMO V MEDIA CENTRE V OUR WORK V PUBLICATIONS V KNOWLEDGE CENTRE

DIMECC One Sea

Timeline for autonomous ships

2017	202	20	2023	2025
Remote monitoring	Fully remote control – unmanned with sp		Gradual increase of autonomous control	Autonomous ship traffic commercial
Test areas	National pilots Several p	ilots globally	Full scale	e testing / validation
			Domestic authority approval / certificate	Class/IMO reg. in place
International collaboration	Design requirements fo power and propulsion s Autonomous automobile commercial	ystems Developed data transfer	Satellite becomes cheaper Mobility as a service "Industry standards in place"	Strongly decreased data communication
Ethical issues				
Development of cyber security				
Projects, IPR, competences, education				

MARITIME UK BEING A RESPONSIBLE

INDUSTRY Maritime Autonomous Ship Systems (MASS) UK Industry Conduct

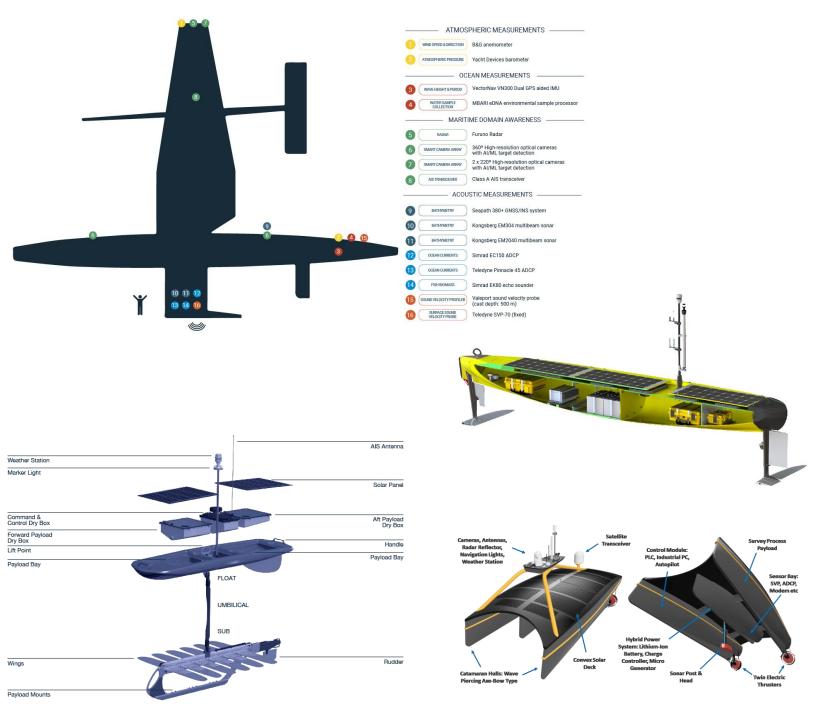
Principles and Code of Practice

National, IMO and global legislation development

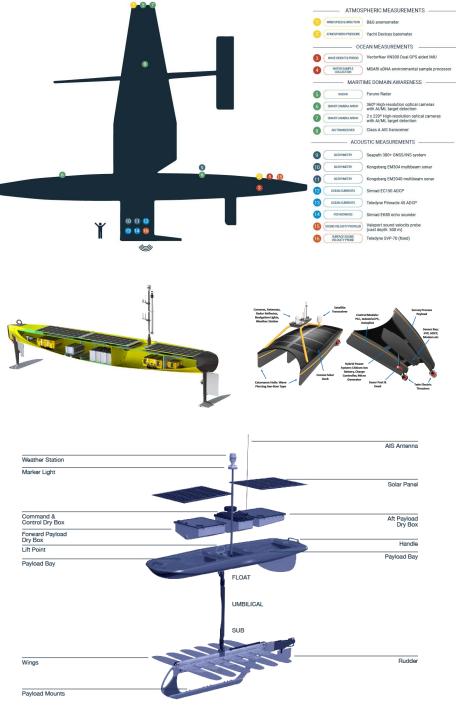
ACTIVE OBSTACLE AVOIDANCE TO MAINTAIN TRAFFIC SEPARATION

ALERT: // TARGET OF INTEREST 32° 54 meters 217° 154 meters

COURTESY OF SEA MACHINES ROBOTICS



- Propulsion based on **ocean-energy sources** (waves, wind and sunlight). Highly capables to increase **persistent-presence** in the ocean in a more sustainable and efficient **routine-mode operation**.
- Long-range (weeks/months) missions in both coastal and open-ocean areas.



Why USV are key for Ocean-Observing?

GCOS Essential Climate Variables

Macroalgal Canopy Cover And Compos

Microbe Biomass And Diversity (emergin

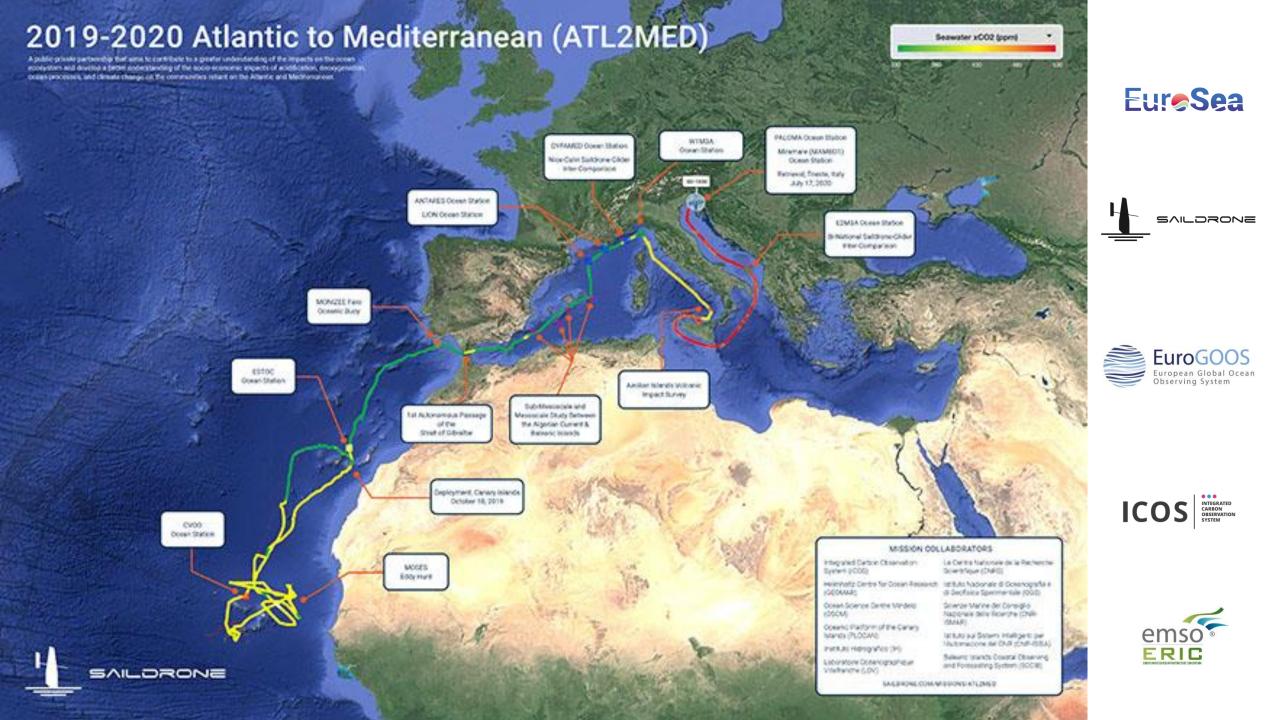
Marine Turtles, Birds, Mammals Abundance And Distribut

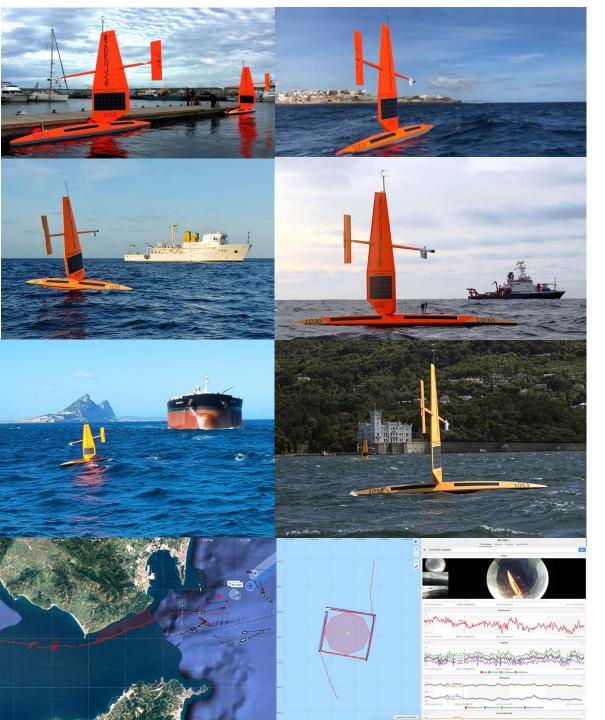
Mangrove Cover And Compo

Nitrous C

The Global Ocean Observing System

Dissolved Organic Carbon Phytoplankton Biomass And Diversity Fish Abundance And Distribut Hard Coral Cover And Composit Sea Ice Sea State Inorganic Carl Sea Surface Height nvertebrate Abundance And Distribution (emergin Sea Surface Salinity Sea Surface Temperatu agrass Cover and C Stable Carbon Isotopes Subsurface Currents Nutrion Subsurface Salinity Ocean C Ocean S Ocean Surface Heat Fl ansient Tracers Ocean Surface Stres Zooplankton Biomass And Diversity Oxygen


Particulate Matter



1053

IN

2019-2020 ATL2MED Mission Stats

Mission duration	274 days (October 18, 2019 to July 17, 2020)
Distance sailed	15,015 nautical miles (27,810 kilometers or 17,280 miles) – both vehicles combined
Average vehicle speed	2–3 knots (average human walking pace)
Ocean stations visited	9
Data collected	Carbon, (pCO ₂), acidity, current velocity & direction, wind speed & direction, relative humidity, barometric pressure, air & sea temperature, salinity, dissolved oxygen, chlorophyll, wave height & period, acoustic backscatter

- Technology level (TRL) already well developed and mature.
- Huge Tech&Operational capabilities /uses.
- Wide range of applications/services for key marine and maritime sectors on ocean observing, survey, intervention, etc. already underway.

Clear lack at NETWORK level

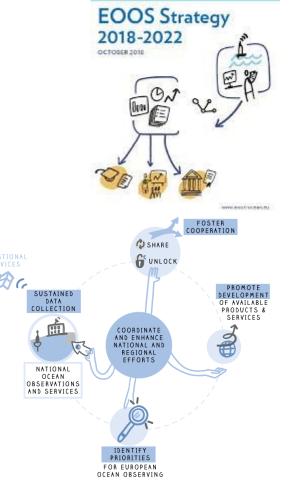
Technical# Operations / Missions# Data/Metadata

Legal framework# Best Practices / Standards# ...

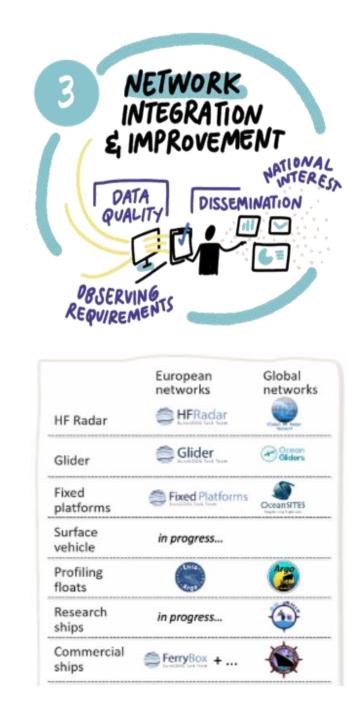
EuroGOOS 2030 Strategy 2030

Towards an end-to-end, integrated and sustained ocean observing system for Europe

WWW.BOOD-OCEAN.ME


Consultation Document

ALIGNING, INTEGRATING AND PROMOTING EUROPE'S OCEAN OBSERVING CAPACITY



Eur Sea

WP3 – Task 3.7 Autonomous Surface Vehicles Network

1) ASV-Network definition and roadmap addressed to cover current and future user's needs, including access to infrastructures, community roadmap monitoring, promoting knowledge exchange, enhancement and partnership worldwide with the establishment of an ASV User Group.

2) Improvements on Standard Operating Procedures (SOP) for derived Best Practices (BP) implementation on operational protocols, data management, knowledge transfer, risk assessment, legislation, etc. in order to properly improve the ASV technology, contributing to the EOOS implementation plan.

3) Two workshops will be organized aiming at ASV technology - challenges, opportunities and user engagement, and ASV technology - BP implementation.

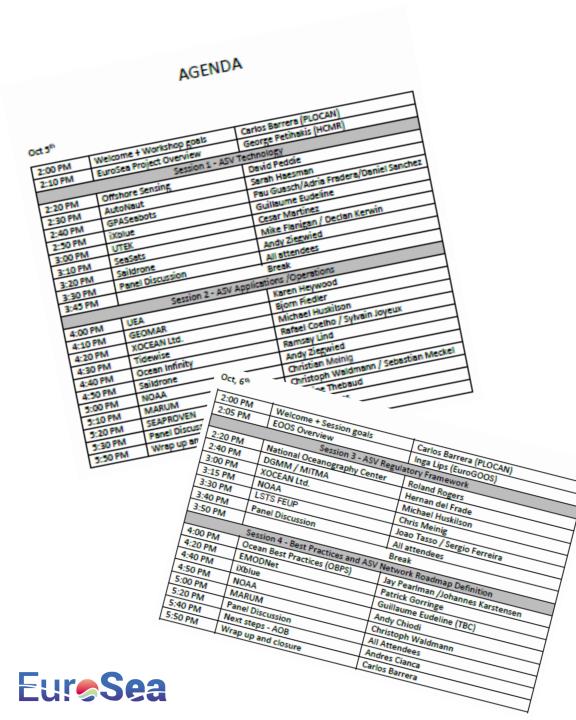
Eurosea Gathering more Knowledge for a Sustainable Use of the Ocean through a Multiplatform-Network approach based on cutting-edge Observing Technologies

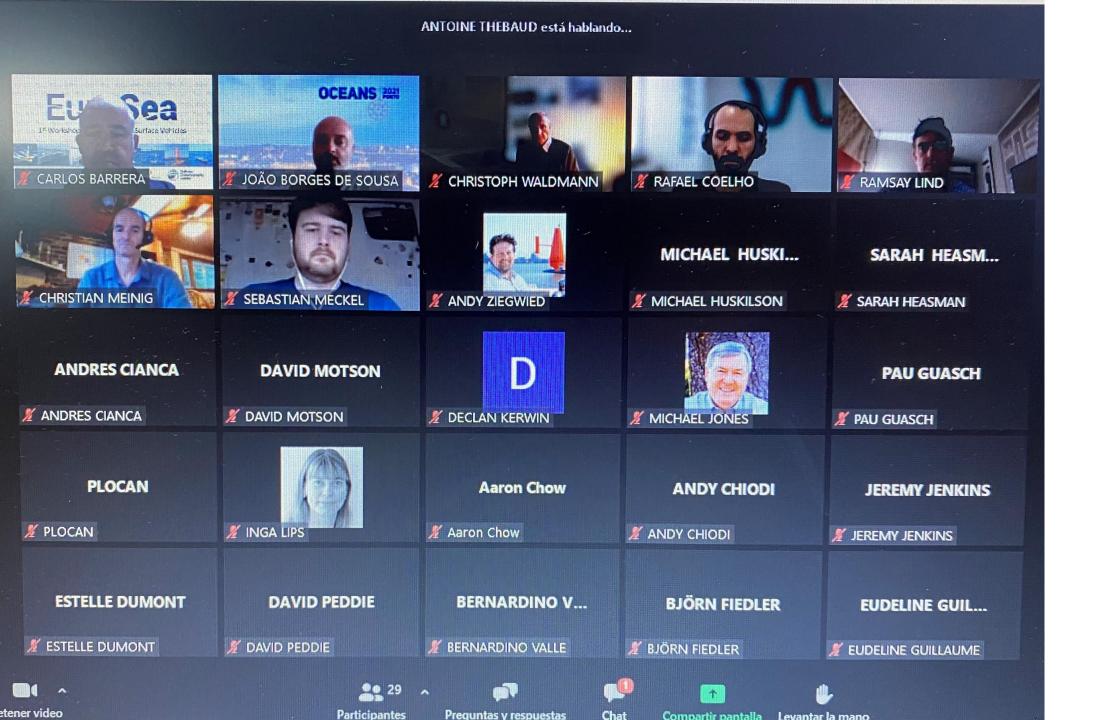
WP3 – Network Integration and Improvement

Task 3.7

Autonomous Surface Vehicles (ASV) Network

1st Workshop (online) October 5th – 6th, 2021





1st USV WS - Main preliminary outcomes

- Great level of interest, attendance and contribution from current key USV-community members representing the "triplehelix" perspective (industry, academia/science and governance). Some other key members unable to attend but committed with future activities.
- The USV technology is already well developed and mature (TRL 8-9) in many cases.
- Huge technological and operational capabilities to cover in a synergistic way current ocean-observing gaps, being two of the main ones (1) to be able to monitor essential climate variables (ECV) and essential ocean variables (EOV) at the same time on an unprecedented space-time scale, and (2) act as gateway to link in real-time underwater observations with satellite platforms.
- Several helpful synergies already identified (and tested) with **other ocean-observing platforms** (fixed and mobile).
- Wide range of applications/services for several Blue Growth sectors on ocean-observing, survey, intervention, border security, etc. some of them already implemented in routine mode.
- Several technologies already as commercial product (important difference from other ocean-observing technologies).
- Risk assessment and management system is key.
- Clear lack at network level (main motivation to undertake this initiative under EuroSea project) from key aspects like technical -platforms and subsystems components-, coordinated operations/missions, data/metadata, legal framework (links with IMO/MASS strategy), best practices and standards, etc.

OT05 - Uncrewed Surface Vehicles (USVs) Technology Trends and Improvements on Observing Applications for the Ocean Decade

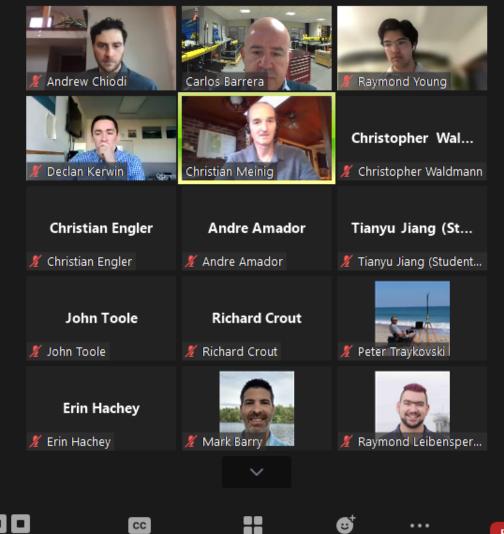
March 2nd 2022 – 3:00-4:00 PM CET (Room 9) // 4:00-5:00 PM CET (Room 28) https://www.aslo.org/osm2022/scientific-sessions/#ot

Desactivar audio

Detener vídeo

Seguridad

🗰 Vista


Participantes

Votaciones

Chat

Compartir pantalla

Pausar/detener grabación

Reacciones

Más

Transcripción en vivo Sección de Grupos

USV Developments 15th March 2022

Industrial Strategy Challenge Director - Robotics, UKRI

Head of the Ocean Vehicles Unit - Oceanic Platform of the

Canary Islands (PLOCAN)

Michael King Senior Business Development

Manager -Ocean Infinity

Stephane Vannuffelen

Marine Autonomy Technical Director - IxBlue Stephen Thomson

Business Development Manager Renewables -Fugro

Sponsored by AUTONAUT

722

oceanology international

15-17 MARCH 2022 LONDON, EXCEL

Autonomous Surface Vehicles (ASV) Network

Contact: andres.cianca@plocan.eu 2nd Workshop

April 13th and 14th, 2023 PLOCAN Headquarters Gran Canaria, Spain

PL	CAN	Plataforma Oceánica de Canarias
<u>ال</u>	Ô:	.

Collaborators

THE OWNER WATCHING

Any questions?

Thank you

DEEPWATER DEVELOPMENT

28 - 30 March 2023 | Millennium Gloucester Hotel |

London, UK

ORGANIZED BY

