DEEPWATER DEVELOPMENT

28 - 30 March 2023 | Millennium Gloucester Hotel |

London, UK

ORGANIZED BY

Mobile FOWTs to Power Oil & Gas Facilities to Reduce CO₂ Emissions

Yusuf Arikan March 30, 2023

Background

- Like most developed countries, in 2019, the government of Canada set a price on carbon pollution across the country.
- CO₂ emission costs \$50/tonne with prices increasing \$15 per year until 2030 when it hits \$170/tonne
- There is significant Oil & Gas exploration and production activity on the east coast of Canada
- Oil & Gas facilities use generators that consume hydrocarbons and release CO₂ for electricity

Background

- Canadian Carbon Tax
 - Carbon tax on all combusted fossil fuels
 - 30% reduction of GHG emissions below 2005 levels by 2030
- MODU (mobile drilling units) produce approximately 40,000 tonnes of CO₂ annually
- Floating Offshore Wind Turbines (FOWTs) can reduce CO2 emissions to 7,000 tonnes, an 83% reduction in emission and fuel costs

Background

- Annual Savings with FOWT 2030
 - \$2.8 million on carbon tax
 - \$3.8 million tradable credits
 - \$16.3 million fuel savings
- The fuel savings for MODUs vary based on the BESS capacity, As BESS increases, the generator loads decrease and create additional cost savings on fuel and emissions tax.

Study – Feasibility of FOWTs to Power Oil & Gas Facilities to Reduce CO2 Emissions

- Funded by Canadian government
- Led by Waterford Energy Services Inc. (WESI)
 - Economic and logistical feasibility
- 2H Offshore
 - FOWT mooring Design
- 2 Target Oil& Gas Fields
 - Grand Banks (100m)
 - Flemish Pass (1,200m)

Mobile FOWT Design Challenges

- Drillship is to relocate to a new well location at every 6 to 12 months
- The water depth can change anywhere from 100m to 1,200m in the field
- Mooring design should work at every possible water depth in the field
- Mooring and anchor component sizes are to remain unchanged regardless of water depth
- Modular mooring segments to facilitate mooring length adjustment based on water depth

Mooring Design Premise

- Design Load Cases
 - 50yr extreme storm (DnV DLC 6.2 Parked)
 - Operational at rated and cut-out wind speeds with severe sea state (DnV DLC 1.6)
 - Packed ice condition (DnV DLC 9.1)
 - 1,000kN in Surge
 - 300kN in Sway

Site	Storm Condition	Hs	Тр	У	Wind Speed		Surface Current	Seabed Current
		m	S		m/s		m/s	m/s
Grand	1yr	8.04	12.37	2.08	10.59 ¹	28 ²	0.25	0.1
Banks	50yr	14.32	15.6	2.74	32.51		1.2	0.4
Flemish	1yr	8.93	13	2.11	10.59 ¹	28 ²	0.3	0.1
Pass	50yr	15.2	16.04	2.77	34.73		1.4	0.3
1/ May thrust wind speed								

1/ Max thrust wind speed

2/ Cut-out wind speed

Mooring Design Premise

- NREL's 15MW WTG
- VolturnUS Concrete Floater by Unv of Maine
- 6-Line Chain Catenary Mooring
 - Redundancy in case of mooring failure due to oil & gas facilities
 - Robustness for handling and multiple installation and retrieval
- DnV-ST-0119 Consequence Class-1 (Redundant)
 - Target Strength Utilization < 0.95

Limit State	Consequence Class 1 Load Factors				
	Y _{mean}	Y _{dyn}			
Ultimate Limit State (ULS)	1.3	1.75			
Accidental Limit State (ALS)	1.0	1.10			

Mooring Configuration at Grand Banks (100m)

- 6 mooring line spread system:
 - 3 clusters at 120°, lines 10° apart within cluster
- 84mm R5 Chain
- MBL: 7,742kN (includes 4mm corrosion)
- Min Chain Length: 650m

2

Configuration	Chain Size	Top Angle	Pre- tension	Max Offset	Strength Utilization	Max Tension	Chain MBL	Required Chain Length
	mm	0	% MBL	m	-	kN	kN	m
6ML – Config 1	150	50	6%	15.3	42%	5,884.3	21,789.0	482.5
6ML – Config 2	124	50	6%	17.2	54%	5,433.2	15,852.0	552.9
6ML – Config 3	94	50	6%	20.4	81%	4,877.7	9,539.0	653.4
6ML – Config 4	84	50	6%	21.3	102%	4,996.3	7,742.0	683.5
6ML – Config 5	94	30	3%	34.9	72%	4,346.9	9,539.0	610.0
6ML – Config 6	84	30	3%	35.9	90%	4,401.8	7,742.0	650.0

Mooring Configuration at Flemish Pass (1,200m)

- 6 mooring line spread system:
 - 3 clusters at 120°, lines 10° apart within cluster
- 84mm R5 Chain
- MBL: 7,742kN (4mm corrosion)
- Anchor Radius: 1,250m
- Min Chain Length: 2,000m
- Chain Segments: 250m to 500m

2

	Chain Size	Top Angle	Pre-Tension	Strength Utilization	Max Tension	Chain MBL
Configuration	mm	0	% MBL		kN	kN
6ML - Config 1	124	10	26%	60%	6624.5	15483.0
6ML - Config 2	84	10	26%	87%	4483.0	7537.0
6ML - Config 3	74	10	26%	100%	4051.7	5927.6
6ML - Config 4	78	10	26%	95%	14247.2	6549.2

Key Takeaways

- The government of Canada set a price on carbon pollution (carbon tax) targeting GHG emission reduction of 30% below 2005 levels by 2030.
- FOWTs can reduce MODU's CO₂ emissions and fuel costs by 83% or more based on the BESS capacity providing annual savings of over \$20 million.
- Robust and mobile mooring system can be designed for FOWTs considering local environmental conditions and water depths.
- Redundant mooring system can ensure the safety of oil & gas facilities even with failed mooring lines.
- Power cables can be suspended in water column for deep waters or laid on the seabed for shallow waters.
- The concept is being advanced for larger emitters in the offshore Oil and Gas industry. We expect this technology to be employed by 2030 in Atlantic Canada; Oil and Gas Production will exist beyond 2050 however, associated emissions will be curtailed significantly

Thank You Questions

Contact: yusuf.arikan@2hoffshore.com

www.2hoffshore.com

www.wesi.ca

DEEPWATER DEVELOPMENT

28 - 30 March 2023 | Millennium Gloucester Hotel |

London, UK

ORGANIZED BY

